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Abstract

Although the use of clustering methods has rapidly become one of the standard computational ap-

proaches in the literature of microarray gene expression data, little attention has been paid to uncertainty

in the results obtained. Dirichlet process mixture models provide a non-parametric Bayesian alternative to

the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published

applications of Bayesian model based clustering methods have been to short time series data. In this

paper we present a case study of the application of non-parametric Bayesian clustering methods to the

clustering of high-dimensional non-time series gene expression data using full Gaussian covariances.

We use the probability that two genes belong to the same cluster in a Dirichlet process mixture model

as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used

to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the

standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained

from the Rosetta compendium of expression profiles which extend previously published cluster analyses

of this data.

Index Terms

Clustering, classification, and association rules, Biology and genetics, Bioinformatics (genome or

protein) databases, Statistical computing, Stochastic processes, Monte Carlo

I. INTRODUCTION

The use of clustering methods has rapidly become one of the standard computational ap-

proaches to understanding microarray gene expression data [1]–[3]. In clustering, the patterns

of expression of different genes across time, treatments, and tissues are grouped into distinct

clusters (perhaps organized hierarchically) in which genes in the same cluster are assumed to be

potentially functionally related or to be influenced by a common upstream factor. Such cluster

structure can be used to aid the elucidation of regulatory networks. For example, a compendium

of gene expression profiles corresponding to mutants and chemical treatments can be used

as a systematic tool to identify gene functions because mutants or drug targets that display

similar profiles are likely to share cellular functions [4]. It would also be expected that gene

knockouts/mutations or treatments that have impact on the same signaling or metabolic pathway

or affect the same organelle would exhibit some overlap in altered gene expression profiles.

Agglomerative hierarchical clustering [1] is one of the most frequently used methods for
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clustering gene expression profiles. However, commonly used methods for agglomerative hi-

erarchical clustering rely on the setting of some score threshold to distinguish members of

a particular cluster from non-members, making the determination of the number of clusters

arbitrary and subjective. The algorithm provides no guide to choosing the “correct” number

of clusters or the level at which to prune the tree. It is often difficult to know which distance

metric to choose, especially for structured data such as gene expression profiles. Moreover, these

approaches do not provide a measure of uncertainty about the clustering, making it difficult to

compute the predictive quality of the clustering and to make comparisons between clusterings

based on different model assumptions (e.g. numbers of clusters, shapes of clusters, etc.). In this

paper we use statistical inference to overcome these limitations. An important issue that must

be addressed in any clustering method is the question of how many clusters to use. Bayesian

statistics and model based approaches can provide elegant solutions to model selection questions

of this kind. With these approaches there is no need to make arbitrary choices about how many

clusters there are in the data; nevertheless, after modeling one can still ask questions such as

“how probable is it that two genes belong to the same cluster?”

Within a Bayesian framework, all assumptions are presented in terms of priors and the choice

of likelihood function. Since it seems unreasonable to assume that complex gene expression data

have been generated by some small finite number of causes, an elegant nonparametric approach

is to assume that the data was in fact generated from an infinite number of Gaussian clusters. In

a Gaussian clustering model each gene expression profile represents a multidimensional vector

of measurements and the probability distribution for each cluster is assumed to be a multivariate

Gaussian. We describe an approach to the problem of automatically clustering microarray gene

expression profiles based on the theory of infinite Gaussian mixtures (or Dirichlet process

mixtures (DPM)) [5], [6]. This theory is based on the observation that the mathematical limit

of an infinite number of components in an ordinary finite mixture model (i.e. clustering model)

corresponds to a Dirichlet process prior [5]–[7]. In an infinite Gaussian mixture model there

is no need to make arbitrary choices about how many clusters there are in the data. Although

in theory the infinite mixture model has an infinite number of parameters, surprisingly, it is

possible to do exact inference in these infinite mixture models efficiently using Markov chain

Monte Carlo (MCMC) methodology, since only the parameters of a finite number of the mixture

components need to be represented explicitly. The theory of Dirichlet process mixture models
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has a long history, going back to [7]–[9], and has recently become popular with the availability of

fast MCMC inference, see [6], [10] for early examples. We first proposed and implemented the

application of DPMs to clustering gene expression profiles in an extended conference abstract in

2002 [11] . Although this work is not widely known and cited, many groups have subsequently

independently rediscovered the value of a fully Bayesian analysis based on DPMs to this problem

[12]–[16]. We have also subsequently applied the approach to the clustering of protein sequences

[17].

In this paper we illustrate our methods in detail, with a practical application to a well

studied data set: the Rosetta compendium of expression profiles corresponding to 300 diverse

mutations and chemical treatments in S. cerevisiaie [4]. We describe a simple, but novel method

of visualizing the results which facilitates comparison with the dendrograms obtained by the

usual hierarchical clustering approach to this type of data. Whilst our results confirm many

of the previously published clusters identified in this data set, they also provide new biological

insights by revealing a finer level of granularity in the clustering. These results are consistent with

recent literature which suggests that distinct functions may share proteins and have overlapping

regulatory mechanisms.

II. METHODS

A. Dirichlet Process Mixture Models

Although hierarchical clustering is the most widely used method for clustering gene expression

data, model-based non-hierarchical methods have also been explored. One commonly used com-

putational method of non-hierarchical clustering based on measuring Euclidean distance between

gene expression profiles is given by the k-means algorithm [18], [19]. However, the k-means

algorithm is inadequate for describing clusters of unequal size or shape [20]. A generalization of

k-means can be derived from the theory of maximum likelihood estimation of Gaussian mixture

models [21], [22]. In a Gaussian mixture model, the data (e.g. gene expression profiles, which

can be arranged into p-dimensional vectors y) is assumed to have been generated from a finite

number (k) of Gaussians,

P (y) =
k∑

j=1

φjPj(y) (1)
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where φj is the mixing proportion for cluster j (fraction of population belonging to cluster

j;
∑

j φj = 1; φj ≥ 0) and Pj(y) is a multivariate Gaussian distribution with mean μj and

covariance matrix Σj . The clusters can be found by fitting the maximum likelihood Gaussian

mixture model as a function of the set of parameters θ = {φj, μj, Σj}k
j=1 using the EM algorithm

[21]. Euclidean distance corresponds to assuming that the Σj are all equal multiples of the identity

matrix.

Starting from a finite mixture model (1), we define a prior over the mixing proportion

parameters φ. The natural conjugate prior for mixing proportions is the symmetric Dirichlet

distribution, with concentration parameter α/k:

P (φ|α) =
Γ(α)

Γ(α/k)k

k∏
j=1

φ
α/k−1
j (2)

where α controls the distribution of the prior weight assigned to each cluster, and Γ is the gamma

function.

We then explicitly include indicator variables ci for each data point (i.e. gene expression

profile) which can take on integer values ci = j, j ∈ {1, . . . , k}, corresponding to the hypothesis

that data point i belongs to cluster j. Under the mixture model, by definition, the prior probability

is proportional to the mixing proportion: P (ci = j|φ) = φj . A key observation is that we can

compute the conditional probability of one indicator variable given the setting of all the other

indicator variables after integrating over all possible settings of the mixing proportion parameters:

P (ci = j|c−i, α)=

∫
P (ci = j|c−i, φ)P (φ|c−i, α) dφ=

n−i,j + α/k

n− 1 + α
(3)

where c−i is the setting of all indicator variables except the ith, n is the total number of data

points, and n−i,j is the number of data points belonging to cluster j not including i. By Bayes

rule,

P (φ|c−i, α) = P (φ|α)/P (c−i|α)
∏
��=i

P (c�|φ) (4)

which is also a Dirichlet distribution, making it possible to perform the above integral analytically.

We can now take the limit of k going to infinity, obtaining a Dirichlet Process with differing

conditional probabilities for clusters with and without data: for clusters where n−i,j > 0: p(ci =

j|c−i, α) =
n−i,j

n−1+α
. For all other clusters combined: p(ci �= ci′ for all i′ �= i|c−i, α) = α

n−1+α
.

This shows that the probabilities are proportional to the occupation numbers, n−i,j . Using these
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conditional probabilities one can Gibbs sample from the indicator variables efficiently, even

though the model has infinitely many Gaussian clusters. Having integrated out the mixing

proportions one can also Gibbs sample from all of the remaining parameters of the model,

i.e. {μ, Σ}j , or one can integrate these out as well. The details of these procedures can be found

in [6].

B. Data preprocessing

All gene expression profile data was obtained from the web site http://www.rii.com/

tech/pubs/cell hughes.htm. Data from the treatment and mutant experiments were

concatenated with the control (“wild-type”) experiments. To facilitate direct comparison of our

results with previously published work, profiles were selected from the raw data to include only

experiments with 2 or more genes up- or down-regulated by more than 3-fold, and significant

at P ≤ 0.01 under a gene-specific error model, as described by Hughes et al. [4]; and to include

only genes that were up- or down-regulated more than 3-fold, significant at P ≤ 0.01 in 2 or

more experiments. Following Hughes et al. [4], missing data was replaced by row (column)

means1. The final data set comprised 636 genes and 194 experiments (including controls).

C. Computational Experiments

For all data sets the dimensionality of the data was first reduced by projecting the data onto

the 10 leading eigen-directions of the correlation coefficient matrix. These 10 directions captured

most of the variance in the data. This 10 dimensional projection of the data, y, was then modeled

with the Dirichlet process mixture model. A fully Bayesian approach to choosing the number

of dimensions of the low dimensional projection is beyond the scope of this paper, however one

possibility would be based on defining a Dirichlet process mixture of factor analyzers, which

combines clustering with dimensionality reduction [23]. We have experimented with using 5 and

15 directions in the projection; in both cases the inference algorithm discovers fewer represented

mixture components.

The parameters of the model were assigned prior distributions following [6]. The priors on

the parameters of the Gaussian mixtures were conditionally conjugate, specifically Gaussian for

1We note that a full Bayesian treatment of missing data would involve integrating over the missing values.
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the means and Wishart for the covariances (with top level parameters set to the moments of

the data, such that the entire procedure is insensitive to translation, rotation and rescaling of the

data). The prior on the concentration parameter was chosen to be vague, identical with [6].

The mixture model was initialized with all data belonging to a single Gaussian, and a large

number of Gibbs sampling sweeps are performed, updating all variables and parameters, i.e.

{{μj, Σj}, {ci}, α}, in turn by sampling from the conditional distributions derived in the previous

sections and described in more detail in [6]. To assess the mixing time, we examined the auto-

correlation coefficients for the number of represented components, see Figure 1. We chose the

number of represented components as a diagnostic, as this is one of the properties of the state

which changes most slowly. We estimated the mixing time as the sum of the auto-correlation

coefficients from a large negative lag to large positive lag. For the transcript response clustering

experiment, shown in Figure 1, the mixing time is about 200. We then ran the final MCMC

to generate 100 roughly independent samples, by using a burn-in of 10,000 samples, and then

saving every 1000’th sample for the next 100,000 samples. This took 34 minutes on a desktop

computer. For the clustering of experimental conditions, a similar strategy reveals a somewhat

slower mixing time of 60,000. We thus ran the chain initially for 100,000 iterations for burn

in, and then for 11,000,000 samples, keeping every 100,000th to get 100 roughly independent

samples. This takes about 11 hours on a desktop, but the results of a 100 times shorter run (6

minutes) are virtually indistinguishable.

D. Visualization of Results

We wish to determine the probability that two genes belong to the same cluster, i.e. have

similar functional roles or are influenced by a common upstream factor. Unlike methods based

on a single clustering of the data, the approach described in this paper computes this probability

while taking into account all sources of model uncertainty (including number of clusters and

location of clusters). Specifically, we use the probability pij that two genes i and j belong

to the same cluster in the Dirichlet process mixture model as a measure of the similarity of

these gene expression profiles. Conversely 1 − pij defines a dissimilarity measure, which for

the purposes of visualization, can be input to one of the standard linkage algorithms used for

hierarchical clustering (Figure 6). We can easily compare the dendrograms thus obtained to the

usual hierarchical clustering approach, which computes distance metrics directly on the gene
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Fig. 1. Auto-correlation coefficient function for the clustering of genes experiment. The auto-correlation coefficient function

for the number of represented components for the clustering of genes experiment. The function is only shown for positive lags,

but is symmetric. The area under the curve (including both sides) is about 200.

expression profiles or correlation coefficients between profiles [1]. Clustering is done in both

directions: both by gene transcripts and by experimental profiles.

E. Annotation of clusters by Gene Ontology

An important first step towards obtaining a functional profile of a gene list is to cluster

the genes in terms of a comprehensive, well-structured set of functional categories such as

that defined by the Gene Ontology (GO) Database. GO provides three structured ontologies

of defined terms to describe gene product attributes: biological process, molecular function

and cell component. Groups annotated at the highest level in the GO hierarchy (biological

process) are likely to contain genes involved in related pathways. In order to find statistically

significant GO annotations related to a given cluster of genes, we looked for annotation terms

that are over-represented in this cluster. The probability that this over-representation is not found

by chance can be calculated by the use of a hypergeometric test. Because of the effects of

multiple testing, a subsequent correction of the p-values is necessary, and we used the SGD

GO Term Finder http://db.yeastgenome.org/cgi-bin/GO/goTermFinder [24],

which applies a Bonferroni correction.

After identifying clusters and their members, the SGD GO Term Finder was used to determine

whether clusters were overrepresented by particular cellular localization, molecular function, or
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molecular process GO terms. Absolute p-value depends on size of clusters and the size of the

reference list, in this case all yeast ORFs with an assigned GO term. The set of experimental

clusters shrinks when we exclude double mutants, chemical treatments, and wild type profiles.

It should also be noted that SGD GO Term Finder does not calculate underrepresented GO

terms and this has not been considered here. It can be seen for some clusters that the assigned

GO term may be either too specific or too general. For example, cluster 15 of the clustering

of experiments has as its top molecular process GO term “physiological process”, a high-level

ontology but not insightful. For the same cluster, the best molecular function GO term is given

as “hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amides” – this

is a low-level, highly specific function yet also not immediately insightful. Rather than focussing

on the best hit alone, all significant GO terms are used to provide insight (see Supplemental

Material, Tables 1-6).

III. RESULTS AND DISCUSSION

A. Clustering by transcript response

In all, 636 transcripts were found to meet the prefiltering criteria described in the Methods

section. That is, these genes are those most affected by the gene knockouts/treatments which

constitute the experimental conditions. In Figure 2 we show the relative frequency of the

number of represented components over the MCMC samples. It shows that between 40 and

70 components are likely. This wide range of number of clusters underline our premise, that the

individual clusterings found are associated with substantial uncertainties. Rather than picking

one particular clustering, in the following we always visualize properties averaged over all states

sampled by MCMC.

In Figure 3 we show the number of times, out of 100 samples, that the indicator variables

for two genes were equal. As described in the Methods section, this may be interpreted as the

probability pij that two genes i and j belong to the same cluster, and the different colours

represent this probability. We refer to pij as the co-occurrence probability of genes i and j. The

granularity of this clustering is determined by the data and not by some user-defined threshold.

Large solid blocks of color along the diagonal correspond to homogeneous clusters. Note that

in our method, sequences may partially belong to more than one cluster; off-diagonal elements

indicate such ‘cross-clustering’ or overlapping clusters. These off-diagonal blocks (such as cluster
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Fig. 2. Number of represented components for the clustering of transcript responses experiment. Figure showing that the

relative number of components along the MCMC run varies between about 40 and 70.

2 or 4 in Figure 3) may indicate one of two possibilities; it may mean that there is uncertainty

in whether a set of genes should be assigned to one of the two clusters, or it may indicate a

set of genes which should really belong simultaneously to two clusters. In this latter case the

fundamental assumption that a gene belongs to only one cluster does not apply, and suggests the

existence of overlapping regulatory pathways. We focus on 17 transcript response clusters (TCs)

represented as blocks of color along the diagonal (cluster members are given in Table I). Of these,

11 clusters form a single group along the diagonal, whilst in 5 cases, the clusters are broken into

subclusters (clusters 2, 4, 9, 12 and 15). These are seen as mirrored bands above the background

color (dark blue) and off the diagonal. The subclusters indicate that, while their members are

most closely linked, there is also simultaneously a weaker affinity for other clusters. Using the

SGD GO Term Finder, we determined overrepresented GO terms for each of the 17 transcript

clusters. The top GO term and the p-value for each TC is given in Table III. Significance is

defined as p < 10−2.

Hughes et al. [4] applied agglomerative hierarchical clustering using a correlation coeffi-

cient based distance metric [1]. They identified eight main transcript response clusters: PAU;

RNR2,3,4; ergosterol; amino acid biosynthesis; calcineurin/PKC; mitochondrial function, mating,

and S/C (general stress response and carbohydrate metabolism). The PAU cluster includes a

family of genes noted only for their lack of serine residues, and for being induced during

anaerobic growth, but which otherwise do not have a known function [25], [26]. The RNR

cluster represents genes that respond to DNA damage. The following TCs in Figure 3 appear to
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Fig. 3. Co-occurrence probabilities of the 636 transcript response clusters. Figure showing the number of times, out of 100

samples, that the indicator variables for two genes were equal. This may be interpreted as the probability pij that two genes

i and j belong to the same cluster, and the different colors represent this probability. Numbers 1–17 indicated in the margins

refer to the Transcript Clusters (TC’s) discussed in detail in the text. Sub-figures represent a magnified view of portions of the

larger figure. A larger version of this figure is available in the Supplementary Materials.
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Table 1. List of ORFs in transcript clusters (TCs)

Cluster 1

YPR002W  PDH1

YGR035C 

YMR102C 

YOR136W  IDH2

YDR406W  PDR15

YOR135C 

YLR304C  ACO1

YOR153W  PDR5

YNL037C  IDH1

YLR346C 

YOR049C  RSB1

YAL061W 

YBL043W  ECM13

YNR056C  BIO5

Cluster 2

YLR042C 

YOR247W  SRL1

YKR013W  PRY2

YPL163C  SVS1

YIL123W  SIM1

YPL256C  CLN2

YJL158C  CIS3

YOR248W 

YGR014W  MSB2

YDR309C  GIC2

YGR189C  CRH1

YLR194C 

YKR091W  SRL3

YKR061W  KTR2

YDR077W  SED1

YPL067C 

YHR030C  SLT2

YLR121C  YPS3

YPR078C 

YHR209W 

YDR085C  AFR1

YNL034W 

YJL027C 

YGR156W  PTI1

YKL163W  PIR3

YOL011W  PLB3

YEL021W  URA3

YLR391W-A 

Cluster 3

YLR343W  GAS2

YBL101W-B 

YCL019W 

YIL060W 

YBL005W-B 

YAR009C 

YER138C 

YBR012W-B 

YMR050C 

YMR045C

Cluster 3 (continued)

YOL106W 

YER160C 

YLR334C 

YML045W 

YJR029W 

YJR027W 

YHR214C-B 

YML039W 

YLR035C-A 

YFL002W-A 

YDR170W-A 

YHR213W 

Cluster 4

YDL037C  BSC1

YDL039C  PRM7

YDL038C 

YCR021C  HSP30

YDR516C  EMI2

YER066C-A 

YDR343C  HXT6

YFR053C  HXK1

YDR342C  HXT7

YER067W 

YPR160W  GPH1

YOL150C 

YFL060C  SNO3

YEL011W  GLC3

YBR183W  YPC1

YBL049W  MOH1

YPL230W 

YDR277C  MTH1

YBL064C  PRX1

YML128C  MSC1

YLL026W 

HSP104

Cluster 5

YHR092C  HXT4

YBR066C  NRG2

YLL025W  PAU17

YDR213W  UPC2

YOR394W  PAU21

YJR150C  DAN1

YPL282C  PAU22

YHR139C  SPS100

YJL223C  PAU1

YIR041W  PAU15

YKL224C  PAU16

YCR104W  PAU3

YLL064C  PAU18

YEL049W  PAU2

YGR294W  PAU12

YIL176C  PAU14

YOR010C  TIR2

YLR461W  PAU4

Cluster 5 (continued)

YLR037C  DAN2

YFL020C  PAU5

YBR301W  DAN3

YGL261C  PAU11

YOL161C  PAU20

YDR542W  PAU10

YHL046C  PAU13

YNR076W  PAU6

YMR325W  PAU19

YOR009W  TIR4

YAL068C  PAU8

YGR213C  RTA1

YJL114W 

YIL175W 

YMR316C-B 

YGR144W  THI4

Cluster 6

YGL183C  MND1

YNL180C  RHO5

YGR040W  KSS1

YKL178C  STE3

YHR145C 

YOL104C  NDJ1

YLR040C 

YJR004C  SAG1

YPL192C  PRM3

YIL082W 

YCL027W  FUS1

YCL055W  KAR4

YDR124W 

YHR005C  GPA1

YMR065W  KAR5

YIL015W  BAR1

YLR452C  SST2

YNR044W  AGA1

YBL016W  FUS3

YJL157C  FAR1

YGL032C  AGA2

YCR089W  FIG2

YBR083W  TEC1

YCLX07W 

YDR461W  MFA1

YFL026W  STE2

YKL209C  STE6

YCRX18C 

YML048W-A 

YNL279W  PRM1

YNL145W  MFA2

YMR232W  FUS2

YIL080W

YIL082W-A 

YIL037C  PRM2

YJL170C  ASG7

YIL011W  TIR3

YBR250W

Cluster 7

YOR107W  RGS2

YLR237W  THI7

YNR064C 

YFR047C  BNA6

YBR045C  GIP1

YKL218C  SRY1

YJL217W 

YIL164C  NIT1

YBR294W  SUL1

YOL064C  MET22

YJL089W  SIP4

YGL009C  LEU1

YNR069C  BSC5

YER081W  SER3

YPL135W  ISU1

YBR105C  VID24

YIL056W  VHR1

YNR058W  BIO3

YOR130C  ORT1

YJR130C  STR2

YGL180W  ATG1

YKL120W  OAC1

YLR162W 

YKL121W 

YOR303W  CPA1

YDL170W  UGA3

YJR154W 

YOR337W  TEA1

YOR339C  UBC11

YHR208W  BAT1

YGR239C  PEX21

YIL165C 

YGL125W  MET13

YJR155W  AAD10

YER091C  MET6

YDL198C  GGC1

YNL104C  LEU4

YDR127W  ARO1

YJR109C  CPA2

YOL140W  ARG8

YNR050C  LYS9

YHR162W 

YER024W  YAT2

YLR267W  BOP2

YER073W  ALD5

YHR029C  YHI9

YBR248C  HIS7

YDR158W  HOM2

YOR203W 

YLR152C 

YDR035W  ARO3

YMR097C  MTG1

YJR111C 

YMR108W  ILV2

YPL250C  ICY2

YER052C  HOM3

TABLE I

LIST OF ORFS IN TRANSCRIPT CLUSTERS (TCS)
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Table 2. List of mutants in experimental conditions clusters (ECs)

Cluster 1

ssn6

tup1

Cluster 2

CDC42 (TET promoter)

KAR2 (TET promoter)

Cluster 3

HU

rad6

rnr1

swi6

Cluster 4

rpd3

sin3

Cluster 5

dig1

dig1, dig2

dig1-, dig2- (haploid)

fus3- (haploid)

hda1

hog1- (haploid)

sst2- (haploid)

yor080w

Cluster 6

dot4

mrt4

rpl27a-

rps24a-

rps24a- (haploid)

rps27b-

rrp6

sir4

yel033w

yel044w

yhr034c

ymr014w

ymr269w

Cluster 7

ca884-vs.-ca881

Calcofluorwhite

ERG11- (TET promoter)

erg2

erg3- (haploid)

hmg1- (haploid)

HMG2 (TET promoter)

imp2'

Itraconazole

Lovastatin

sir2

Terbinafine

top3- (haploid)

yer044c

Cluster 8

aj307-vs.-aj308

ca721-vs.-ca702

fus3-, kss1- (haploid)

med2- (haploid)

sgt2

sod1- (haploid)

ste11- (haploid)

ste12- (haploid)

ste12- (haploid)

ste18- (haploid)

ste4- (haploid)

ste5- (haploid)

ste7- (haploid)

yjl107c- (haploid)

Cluster 9

cup5

qcr2- (haploid)

rip1

vma8

Cluster 10

Tunicamycin

yer083c

Cluster 11

ade2

aj307-vs.-aj308

bim1

bub1

bub3

bul1

cka2

erg4

pfd2

rtg1

rts1

vac8

vps8

Cluster 12

isw1

isw1, isw2

isw2

ras2- (haploid)

Cluster 13/14

2-deoxy-D-glucose

anp1-

AUR1 (TET promoter)

clb2

CMD1 (TET promoter)

erg4- (haploid)

fks1- (haploid)

FKS1 (TET promoter)

gas1

Glucosamine

hst3

kin3

rad57

she4

spf1

swi4

swi5

yar014c

Cluster 15

aep2

afg3- (haploid)

ard1

ase1

bub3- (haploid)

ca719-vs.-ca700

cem1

cyt1

imp2

kim4

mac1

mrp133

msu1

rml2-

yap1

yer050c

yhl029c

yhr011w-

ymr031w-a

ymr293c

Cluster 16

aj318-vs.-aj317

aj324-vs.-aj323

aj338-vs.-aj337

arg80

ca1047-vs.-ca1048

ca1081-vs.-ca1082

ca1083-vs.-ca1084

Cluster 16 (continued)

ca1105-vs.-ca1106

ca1107-vs.-ca1108

ca1109-vs.-ca1110

ca1133-vs.-ca1134

ca1135-vs.-ca1136

ca1167-vs.-ca1168

ca1169-vs.-ca1170

ca1171-vs.-ca1172

ca1189-vs.-ca1190

ca1191-vs.-ca1192

ca1290-vs.-ca1289

ca1296-vs.-ca1295

ca1332-vs.-ca1331

ca1334-vs.-ca1333

ca1369-vs.-ca1368

ca1408-vs.-ca1407

ca1410-vs.-ca1409

ca1448-vs.-ca1447

ca1450-vs.-ca1449

ca1488-vs.-ca1487

ca1490-vs.-ca1489

ca1492-vs.-ca1491

ca1547-vs.-ca1546

ca1549-vs.-ca1548

ca1601-vs.-ca1600

ca753-vs.-ca752

ca755-vs.-ca754

ca775-vs.-ca774

ca789-vs.-ca788

ca791-vs.-ca790

ca827-vs.-ca826

ca841-vs.-ca840

ca843-vs.-ca842

ca926-vs.-ca927

ca931-vs.-ca930

ca994-vs.-ca993

cs1412vs.-ca1411

ds1242-vs.-ds1241

ds1244-vs.-ds1243

ds1286-vs.-ds1285

ds1288-vs.-ds1287

ds1308-vs.-ds1307

ds1316-vs.-ds1315

ds720-vs.-ds719

ds798-.vs.-ds797

ds800-vs.-ds799

ds866-vs.-ds865

ds904-vs.-ds903

ds906-vs.-ds905

ecm10

gln2

npr2

nta1

pex12

ppr1

sir3

TABLE II

LIST OF MUTANTS IN EXPERIMENTAL CONDITIONS CLUSTERS (ECS)
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Table 3. Clustering by transcript profiles. 636 transcript profiles used. 515 placed in clusters.

Cluster #ORFs Function p Process p Component p

1 14 isocitrate dehydrogenase

(NAD+) activity
6.83E-06 glutamate biosynthesis 2.03E-06 mitochondrial nucleoid 8.800E-04

2 28
structural constituent of cell wall 5.78E-07

cell wall organization and
biogenesis

1.79E-05 cell wall 8.140E-12

3 22 RNA-directed DNA polymerase
activity

1.02E-27 Ty element transposition 2.23E-28 retrotransposon nucleocapsid 1.860E-28

4 21 fructose transporter activity 8.60E-04 monosaccharide transport 2.27E-05 plasma membrane 3.144E-02

5 34 molecular function unknown 3.85E-08 biological process unknown 2.40E-07 cellular component unknown 1.170E-06

6 38 cell adhesion molecule binding 5.81E-07 conjugation 2.14E-23 mating projection tip 1.750E-08

7 82
catalytic activity 1.78E-06 amino acid biosynthesis 1.74E-31

carbamoyl-phosphate synthase
complex

2.400E-04

8 91 sugar transporter activity 2.79E-11 carbohydrate transport 3.42E-10 cellular component unknown 3.550E-06

9 19 iron ion transporter activity 8.93E-11 siderophore transport 4.02E-19 endosome 3.100E-05

10 10 cyclin-dependent protein kinase

regulator activity
4.40E-04

regulation of cyclin dependent

protein kinase activity
1.60E-04 endoplasmic reticulum 7.396E-02

11 32 hydrolase activity, hydrolyzing
O-glycosyl compounds

4.53E-06
cytokinesis, completion of
separation

1.61E-08 cell wall (sensu Fungi) 2.510E-08

12 14
endopeptidase activity 6.14E-03

cell wall organization and
biogenesis

3.19E-02 plasma membrane 7.754E-02

13 18 monooxygenase activity 7.14E-07 steroid biosynthesis 6.23E-19 endoplasmic reticulum 4.400E-11

14 8 oxidoreductase activity, acting

on sulfur group of donors
2.48E-07 sulfur utilization 2.71E-13 sulfite reductase complex (NADPH) 2.100E-06

15 17 oxidoreductase activity, acting
on the aldehyde or oxo group of

donors

1.54E-03 vitamin metabolism 1.40E-02 storage vacuole 4.414E-02

16 42 protease inhibitor activity 1.86E-06 beta-alanine biosynthesis 6.43E-05 cytoplasm 1.090E-03

17 25 polyamine transporter activity 1.57E-03 polyamine transport 5.50E-04 vacuole 3.830E-05

TABLE III

SUMMARY OF SGD GO ANNOTATIONS FOR TRANSCRIPT CLUSTERS

match with the following groups found by Hughes et al.: PAU (TC 5), RNR (TC 3), ergosterol

(TC 13), mitochondrial function (TC1), and mating (TC 6). The other clusters described by

Hughes et al., in particular the S/C cluster and amino acid biosynthesis cluster, are distributed

over several TC clusters. In particular TC4 (monosaccharide transport), TC7 (general amino

acid biosynthesis), TC 8 (carbohydrate transport) TC 14 (sulfer metabolism), TC15 (vitamin

metabolism), TC16 (beta-alanine biosynthesis), and TC 17 (polyamine transport). As such, the

DPM method was able to distribute the general S/C and amino acid biosynthesis groups into

more specific clusters.
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TC2, TC11, and TC12 all exhibit significance for “cell wall”, “plasma membrane”, and

“cytokinesis” GO terms. Examination of the cluster members suggest TC2 is involved in the

formation of the mating bud. The best process GO term associated with TC11 is “cytokinesis,

completion of separation”. TC12 is associated with process GO term “cell wall organization and

biogenesis”. We note that for TC 5, the best hit for all three GO categories is “unknown”. Cluster

5 is a large group (32 transcripts) and contains 20 out of 21 PAU genes (PAU7 appears in TC

8). TC5 also contains five DAN/TIR mannoproteins genes, which are typically part of the cell

wall. This is in agreement with work indicating the importance of these sets of ORFs in cell wall

integrity [27], suggesting that TC5 is yet another “cell wall” cluster. This identification of a new

cluster of “cell wall” transcripts makes sense in light of the clustering of experimental conditions

described below. While Hughes et al. identified a group of profiles collectively related to “cell

wall”, the DPM clustering suggests that this large group forms smaller, distinctly regulated

subclusters. Recent literature looking at cell wall proteins suggests that distinct functions –

for example, controlling osmotic pressure, responding to physical stress, maintaining cell wall

integrity and providing a protein scaffold – may share proteins and have overlapping regulatory

mechanisms [27]. Furthermore, the signaling pathways involve crosstalk among MAPK kinase

pathways [28]. For example, sets of cell wall proteins, such as the PAU family, are activated by

pheremone signaling, by global stress signaling, as well as the calcineurin-mediated signaling,

suggesting multiple modes of regulation.

Likewise, rather than finding a single large group of transcripts specific to the PKC/calcineurin

as in [4], we find this group split amongst other TCs. Hughes et al. identified this group as com-

prising genes activated when yeast are treated with FK506 or cyclosporin-A. Both compounds

affect calcineurin, a serine/threonine phosphatase implicated in intracellular ion homeostasis,

adaptation to mating pheromone treatment, and mitosis. However, the two compounds are thought

to act through different pathways. Hughes et al. list 42 transcripts as part of this PKC/calcineurin

gene cluster. Of these, we find 31 in five different TCs. 10 transcripts are found in TC2 (cell

wall), 11 in TC12 (cell wall), 8 in TC 16 (beta-alanine biosynthesis), and one each in TC4

(monosaccharide transport) and TC5. It is known that PKC is part of a MAPK cascade involved

in cell wall integrity. It has crosstalk with other MAPK cascades including pheromone response,

osmolarity, and filamentous growth. All told, five of the 17 TCs are associated with the cell

wall. Recent work indicates that beyond providing structural support, components of the cell

November 29, 2007 DRAFT

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002 16

10 20 30 40
Number of represented components

R
el

at
iv

e 
fr

eq
ue

nc
y

experimental conditions clustering experiment

Fig. 4. Number of represented components for the clustering of the experimental conditions. Figure showing that the relative

number of components along the MCMC run varies between about 15 and 30.

wall are involved in diverse functions from uptake of nutrients/metabolism to energy generation

[28]. Likewise, formation of the shmoo during mating involves not only signal transduction by

mating factor but rearrangement of the cytoskeleton and cell wall.

Finally, we identified a cluster (TC9) that does not appear to be covered by those defined by

Hughes et al. The best GO term matches are “siderophore transport” (process GO), “iron ion

transporter activity” (function GO), and “endosome” (component GO).

B. Clustering by Experimental Conditions

Clustering of the expression profiles by experimental conditions identifies those yeast mutants

or compounds that have similar effects on all transcripts. In Figure 4 we show that a minimum

of about 15 components are necessary, and the data supports up to about 30.

Figure 5 shows the clustering of the experimental conditions, which has an interpretation

similar to that of Figure 3. After prefiltering the 300 compendium experiments, 194 expression

profiles including 60 “wild types” remained. “Wild types” represent control experiments testing

neither chemical treatment nor gene knockout, but yet had at least one ORF whose expression

changed more than 2-fold. (These were explicitly excluded from the cluster analysis of Hughes

et al.)

From Figure 5, 16 experimental condition clusters (ECs) are apparent. This is in contrast to
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Fig. 5. Co-occurrence probabilities of the 194 experimental conditions clusters. Figure showing the number of times, out of 100

samples, that the indicator variables for two experimental conditions were equal. This may be interpreted as the probability pij

that two experimental conditions i and j belong to the same cluster, and the different colors represent this probability. Numbers

1–16 indicated in the margins refer to the Experimental Condition Clusters (EC’s) discussed in detail in the text. Sub-figures

represent a magnified view of portions of the larger figure. A larger version of this figure is available in the Supplementary

Materials.
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Table 4. Clustering by experiment/condition. 194 experiment profiles used. 143 profiles placed in clusters.

- : no value determined.

Cluster #ORFs Function p Process p Component p

1 2 general transcriptional
repressor activity

7.52E-08 nucleosome spacing 1.69E-07 nucleus 7.40E-02

2 2 nucleoside-triphosphatase
activity

1.03E-03 conjugation 2.00E-04 none

3 3
- -

nucleobase, nucleoside,
nucleotide and nucleic acid
metabolism

9.15E-03 protein complex 9.97E-02

4 2 histone deacetylase
activity

5.43E-06 chromatin silencing at rDNA 3.68E-06 histone deacetylase
complex

7.52E-06

5 7 MAP kinase activity 9.85E-06 invasive growth (sensu

Saccharomyces)

1.63E-08 nucleus 1.88E-02

6 12 structural molecule activity 2.11E-03 rRNA processing 2.42E-03 non-membrane-bound
organelle

3.90E-04

7 8 hydroxymethylglutaryl-CoA
reductase (NADPH)
activity

2.10E-06 ergosterol metabolism 4.52E-14 endoplasmic reticulum 2.38E-07

8 12 receptor signaling protein
activity

8.75E-09 invasive growth (sensu
Saccharomyces)

3.72E-14 mating projection 5.76E-07

9 5 hydrogen ion transporter

activity

4.01E-06 hydrogen ion homeostasis 9.88E-05 hydrogen-translocating

V-type ATPase complex

4.21E-05

10 - - - - - -

11 12 protein binding 7.70E-04 spindle checkpoint 4.45E-06 kinetochore 8.50E-05

12 4 nucleoside-triphosphatase
activity

1.20E-04 chromatin remodeling 1.94E-03 chromatin remodeling
complex

5.90E-04

13 10 transferase activity,

transferring hexosyl groups

4.74E-03 protein amino acid glycosylation 3.83E-03 incipient bud site 1.01E-03

14 transferase activity 4.47E-02 protein amino acid glycosylation 3.08E-03 - -

15 23 hydrolase activity, acting
on carbon-nitrogen (but not

peptide) bonds, in linear
amides

5.75E-03 physiological process 6.27E-05 mitochondrion 2.23E-05

16 41 wild type

TABLE IV

SUMMARY OF SGD GO ANNOTATIONS FOR EXPERIMENTAL CONDITIONS CLUSTERS

the 13 identified by Hughes et al. [4]. As with the transcript response clustering, it can be seen

that some clusters are bipartite (eg., ECs 5, 7, 11), and there is a region of diffuse clusters (ECs

9-14). Closer examination suggests there may be smaller clusters within this region. Also, two

clusters (EC13 and 14) may be considered to be overlapping. In addition, a dendrogram using

the dissimilarity measure defined above is shown in Figure 6, which may be compared to Figure

3B in the supplementary material of [4].

Apart from EC1, other ECs correspond closely, although not exactly, to those identified

by Hughes et al. For example, the Hughes et al. cluster rnr1/HU overlaps with our EC 3
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Fig. 6. Dendrogram of the dissimilarity measure of the 194 experimental conditions clusters. 1 − pij defines a

di i il i hi h b i f h d d li k l i h d f hi hi l l i
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Table 5. SGD GO annotation of Hughes clustering by experiment. 77 experiment profiles placed in clusters.

Hughes
assignment

#ORFs Function p Process p Component p

1
mitochondrial
function

17

oxidoreductase activity, acting
on diphenols and related
substances as donors,

cytochrome as acceptor

2.00E-04
mitochondrial electron
transport, ubiquinol to
cytochrome c

1.26E-06 mitochondrion 2.38E-11

2 cell wall 9 catalytic activity 2.05E-03
budding cell apical bud
growth

8.13E-05 actin cap 1.50E-04

3 protein synthesis 12
structural constituent of

ribosome
4.00E-04

ribosome biogenesis and

assembly
5.40E-04

intracellular non-

membrane-bound
organelle

3.80E-05

4
ergosterol

biosynthesis
8

hydroxymethylglutaryl-CoA

reductase (NADPH) activity
1.12E-06 ergosterol metabolism 1.62E-15 endoplasmic reticulum 9.24E-09

5 mating 8
receptor signaling protein
activity

1.24E-09
invasive growth (sensu
Saccharomyces)

3.82E-16 cell projection 8.31E-08

6 MAPK activation 6 MAP kinase activity 7.04E-06 filamentous growth 3.56E-07 plasma membrane 1.55E-02

7 rnr1/HU 3 none
nucleobase, nucleoside,
nucleotide and nucleic acid

metabolism

9.15E-03 protein complex 9.97E-02

8
histone
deacetylase

3 histone deacetylase activity 1.26E-08 chromatin silencing at rDNA 7.07E-09
histone deacetylase
complex

2.06E-08

9 isw 3 ATPase activity 1.68E-03 chromatin remodeling 6.07E-06
chromatin remodeling
complex

2.90E-04

10
vacuolar

ATPase/iron
regulation

3
hydrogen ion transporter

activity
1.60E-04 cation homeostasis 1.94E-06

hydrogen-translocating

V-type ATPase
complex

1.26E-05

11 sir 3 histone binding 1.65E-10
loss of chromatin silencing

during replicative cell aging
1.32E-09

nuclear telomeric

heterochromatin
8.84E-10

12 tup1/ssn6 2
general transcriptional
repressor activity

7.52E-08 nucleosome spacing 1.69E-07 nucleus 7.40E-02

TABLE V

SUMMARY OF SGD GO ANNOTATIONS FOR EXPERIMENTAL CONDITIONS CLUSTERS DESCRIBED BY HUGHES ET AL. (2000)

with the exception of MMS. We both find a histone deacetylase group (EC4), an ergosterol

biosynthesis group (EC 7), a mating group (EC 8), a V-ATPase/iron regulation group (EC9),

and a mitochondrial group (EC15). The “ribosome/translation” group identified by Hughes et

al. overlaps with EC 6, which is associated with the molecular process GO term of “rRNA

processing”.

A major difference between Hughes et al. and our DPM results involves profiles identified

as “cell wall”. Hughes et al. identified 13 expression profiles as part of a “cell wall” group.

However we find three distinct clusters within this group. Knockouts for two tetracycline-driven
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genes, tet-KAR2 and tet-CDC42, cluster together as EC2 with a co-occurrence probability close

to 100%; this cluster does not overlap with any other. In addition, tunicamycin and yer083 form

a cluster (identified as EC10) with a co-occurrence probability around 85%, clearly apart from

other profiles. Tunicamycin is thought to disrupt protein glycosylation in yeast [29] while yer083c

has recently been identified as localized to the ER and involved in trafficking cell wall proteins

[30], [31]. The remaining members appear in EC13 which is associated with “incipient bud site”

as its best component GO term. Thus while all 13 members do involve proteins associated with

the cell wall, it may be seen that multiple processes or functions are being affected. Recent work

has indicated the cell wall stress influences many genes through diverse signaling pathways and

different transcription factors [27], [32].

Hughes et al. identify a single cluster containing the sir mutants. Sir proteins are involved

in global gene regulation through chromatin restructuring. However by DPM clustering, we find

each sir knockout in a different cluster: sir2Δ in EC7 (ergosterol), sir3Δ in EC16 (wild type),

and sir4Δ in EC6 (rRNA processing). We note that assocation of sir2 with EC7 is at a co-

occurrence probability of 60%, and association of sir4Δ with EC6 is at 30%. This suggests that

while the SIR proteins are not strongly affiliated with any other group or each other globally, there

may be a subset of specific transcripts that are strongly affected. It is possible that while there

are few co-regulated transcripts, their regulation may be highly similar. The expression profile

of the sir2Δ mutant is most similar to that of imp2’ (YIL154C) at a co-occurrence probability

close to 80%. Sir2p is involved in chromatin silencing; disruption causes problems with DNA

repair while slight overexpression increases the lifespan of yeast and C. elegans [33], [34]. It

is known that caloric restriction increases Sir2p activity. Imp2p is a transcription factor that

activates galactose, maltose and raffinose utilization [35] as well as mediating oxidative damage

to DNA [36]. Similarity in the expression profiles of these two mutants might be because the

set of genes derepressed by the sir2Δ mutant overlap somewhat with those regulated by Imp2p.

Alternately, both mutants might exhibit similar global effects.

The isw1, isw2 group found by Hughes et al. contains four expression profiles (isw1, isw2,

isw1/2, and hst3). We identify EC12 containing isw1, isw1/isw2, isw2, and ras2 but instead put

hst3 as part of the larger EC13/14. The ISW proteins are ATPases and are likely part of a protein

complex involved in chromatin remodeling [37]. Ras2p is a GTP-binding protein involved in

nitrogen starvation response, sporulation, and filamentous growth [38]. Hst3p is part of the Sir
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protein family of histone deacetylases and thought to be involved multiple functions including

telomeric silencing [39]. As noted above, while Hughes et al. placed the Sir proteins into a

single cluster, we find them distributed thought several clusters. However, examination of the

dendrogram (Figure 6) indicates that EC12 may be considered a “subcluster” within the larger

EC13/14 and is joined to the subcluster containing hst3Δ.

C. Discussion

Although the use of clustering methods (in particular agglomerative hierarchical clustering)

has rapidly become one of the standard computational approaches in the literature of microarray

gene expression data, little attention has been paid to uncertainty in the results obtained.

Kerr and Churchill [40] have proposed the use of a bootstrap method to assess the results of

clustering in a statistically quantifiable manner. However, their approach requires the fitting of a

linear statistical (ANOVA) model to the microarray data to obtain least squares estimates of the

differential expression of a given gene, which are then used as inputs to the bootstrap process. An

alternative parametric bootstrap approach has been described by Zhang and Zhao [41] which uses

estimates of the standard errors in gene expression measurements to simulate data from a log-

normal distribution. Hughes et al. [4] describe a permutation procedure to calculate p-values for

the significance of branching in a dendrogram produced by agglomerative hierarchical clustering,

under the null hypothesis that the branching was not significant. However, hierarchical clustering

is a bottom-up algorithm. It starts with each data point assigned to its own cluster and iteratively

merges the two closest clusters together until all the data belongs to a single cluster. Consequently,

the results presented by Hughes et al. (Figure 3B, supplementary information to [4]) only appear

to show strong confidence for the branches at the lowest level of the dendrogram. In contrast,

the dendrogram produced from the DPM procedure (Figure 6) represents a full probabilistic

measure of the (dis)similarity of two gene expression profiles.

Dirichlet process mixture models provide a non-parametric Bayesian alternative to the boot-

strap approach to modeling uncertainty in gene expression clustering. Medvedovic and co-

workers have applied infinite Gaussian (or Dirichlet process) mixture models to the clustering of

time series gene expression data using spherical Gaussians with diagonal covariances [12], [13].

Similar approaches have also recently been described in [16]. However, these approaches do not

explicitly model the correlations between subsequent time points which would be expected to
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occur in time series data, and the use of diagonal covariances may result in more clusters than

necessary to model such correlations. Lui et al. have recently extended their previous work to use

full-covariance models for time series [14]. Since these authors are clustering short time series,

inference in the space of the original data is feasible. In contrast, in the complementary approach

we describe here, we apply the DPM method to high-dimensional non-time series data. Inference

is carried out in a low dimensional projection of this space after dimensionality reduction by

principal component analysis, which makes it possible to use Gaussians with full covariance

matrices, which would be very computationally expensive in the original high dimensional space

as each sampling step has a cubic computational dependency on the dimensionality.

Bayesian approaches to clustering gene expression data have recently received much attention.

Heard, et al. [42] propose an agglomerative clustering procedure for gene expression time series

curves based on a Bayesian merging score, but unrelated to DPMs. Heller and Ghahramani [43]

proposed a different Bayesian hierarchical clustering (BHC) procedure which implements a non-

MCMC inference procedure for DPMs. This BHC algorithm can be used to scale DPM learning

and inference to very large data sets at the cost only partially representing the uncertainty in the

cluster assignments. The MCMC procedure we present in this paper is more computationally

demanding, but captures more completely the sources of uncertainty. In Lau and Green [44],

model-based clustering procedures based on loss functions are derived. An integer program is

identified for finding a single clustering that best matches the posterior co-occurrence probabil-

ities.

Recently, Bidaut et al. [45] have re-analyzed the data of Hughes et al. using “Bayesian

decomposition” to place the experimental profiles into patterns (clusters). The highest scoring

(high persistence) genes in the patterns were annotated using the MIPS database [46] to assign

the pattern to a cellular pathway. Fifteen patterns were discovered, six of which are assigned

to MIPS pathways. Bidaut et al. find that ssn6Δ and tup1Δ appear in many of their patterns,

albeit at low persistence. In contrast, with DPM modeling we find that ssn6Δ and tup1Δ

cluster together although weakly (EC1 - co-occurrence probability of 30%) and apart from other

experimental profiles. This is reinforced by the dendrogram (Figure 6) which shows while the

tup1Δ and ssn6Δ profiles cluster away from the others, they are yet on very long branches from

each other. Clustering of these two knockouts is supported by the fact that Tup1p and Ssn6p

are thought to form a protein complex. As previously mentioned, both proteins are transcription
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factors involved in glucose/catabolic repression although with different but overlapping sets of

targets [39].

Patterns 13 and 15 identified by Bidaut et al. [45] are given significance as distinguishing

between those genes involved in MAPK signaling mating versus those involved in filamentous

growth. While these are two distinct cellular functions, they share signaling components. Bidaut

et al. suggest these groups can be distinguished by whether the genes are regulated by Ste12p

or the Ste12p-Tec1p complex. In our clustering of experimental conditions, all of the ste

deletion mutants plus the fus3Δ, kss1Δ double mutant cluster together (EC8 - component

GO term: mating projection). The fus3Δ single mutant appears in EC8, together with other

genes annotated by the GO molecular function term indicating MAPK activity. However, when

we look at the top genes associated with the Bidaut patterns, 6 of the top 10 genes in pattern 13

are part of TC6 (component GO: mating projection tip) while 7 of the top 10 genes in pattern

15 are part of our TC3 (component GO: retrotransposon nucleocapsid).

IV. CONCLUSION

Dirichlet process mixture models provide a non-parametric Bayesian alternative to the boot-

strap approach to modeling uncertainty in gene expression clustering. Unlike methods based on

a single clustering of the data, the approach computes the probability that two genes belong

to the same cluster while taking into account the main sources of model uncertainty, including

the number of clusters and the location of clusters. Biologically plausible results are obtained

from the Rosetta compendium of expression profiles which extend previously published cluster

analyses of this data. Our results confirm many of the previously published clusters identified

in this data set, but also provide new biological insights by revealing a finer level of granularity

in the clustering. In particular our method was able to distribute general stress response and

carbohydrate metabolism and amino acid biosynthesis groups into more specific clusters. Whilst

previous analyses have identified a group of profiles collectively related to cell wall functions, our

results also suggest that this large group forms smaller, distinctly regulated subclusters. These

results are consistent with recent literature on cell wall proteins which suggests that distinct

functions – for example, controlling osmotic pressure, responding to physical stress, maintaining

cell wall integrity and providing a protein scaffold – may share proteins and have overlapping

regulatory mechanisms.
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